Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland (2024)

Adolph, A. C. and Albert, M. R.: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties, The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, 2014. 

Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol., 39, 150–173, 2017. 

Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, 2008. 

Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarke, A. D.: Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231–235, 1996. 

Bereiter, B., Kawamura, K., and Severinghaus, J. P.: New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples, Rapid Comm. Mass Spectrom., 32, 801–814, 2018. 

Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol., 31, 188–198, 2016. 

Buizert, C.: Studies of Firn Air. In: The Encycl. of Quatern. Sci., edited by: Elias, S. A., Elsevier, Amsterdam, ISBN 978-0-444-53642-6, 2013. 

Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12, 4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. 

Dansgaard, W. and Johnsen, S. J.: A Flow Model and a Time Scale for the Ice Core from Camp Century, Greenland, J. Glaciol., 8, 215–223, 1969. 

de Jong, A. F. M., Alderliesten, C., van der Borg, K., van der Veen, C., and van De Wal, R. S. W.: Radiocarbon analysis of the EPICA Dome C ice core: no in situ 14C from the firn observed, Nucl. Instr. Meth. B, 223–224, 516–520, 2004. 

Desilets, D., Zreda, M., and Prabu, T.: Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude, Earth Planet. Sci. Lett., 246, 265–276, 2006. 

Dlugokencky, E. J., Lang, P. M., Crotwell, A. M., Mund, J., Crotwell, M. J., and Thoning, K.: NOAA GML CH4 surface flask data, https://gml.noaa.gov/dv/iadv/, last access: December 2018. 

Dyonisius, M. N., Petrenko, V. V., Smith, A. M., Hua, Q., Yang, B., Schmitt, J., Beck, J., Seth, B., Bock, M., Hmiel, B., Vimont, I., Menking, J. A., Shackleton, S. A., Baggenstos, D., Bauska, T. K., Rhodes, R. H., Sperlich, P., Beaudette, R., Harth, C., Kalk, M., Brook, E. J., Fischer, H., Severinghaus, J. P., and Weiss, R. F.: Old carbon reservoirs were not important in the deglacial methane budget, Science, 367, 907–910, 2020. 

Dyonisius, M. N., Petrenko, V. V., Smith, A. M., Hmiel, B., Neff, P. D., Yang, B., Hua, Q., Schmitt, J., Shackleton, S. A., Buizert, C., Place, P. F., Menking, J. A., Beaudette, R., Harth, C., Kalk, M., Roop, H. A., Bereiter, B., Armanetti, C., Vimont, I., Englund Michel, S., Brook, E. J., Severinghaus, J. P., Weiss, R. F., and McConnell, J. R.: Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons, The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, 2023. 

Faïn, X., Chappellaz, J., Rhodes, R. H., Stowasser, C., Blunier, T., McConnell, J. R., Brook, E. J., Preunkert, S., Legrand, M., Debois, T., and Romanini, D.: High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in situ production, Clim. Past, 10, 987–1000, https://doi.org/10.5194/cp-10-987-2014, 2014. 

Faïn, X., Rhodes, R. H., Place, P., Petrenko, V. V., Fourteau, K., Chellman, N., Crosier, E., McConnell, J. R., Brook, E. J., Blunier, T., Legrand, M., and Chappellaz, J.: Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores, Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, 2022. 

Faïn, X., Etheridge, D. M., Fourteau, K., Martinerie, P., Trudinger, C. M., Rhodes, R. H., Chellman, N. J., Langenfelds, R. L., McConnell, J. R., Curran, M. A. J., Brook, E. J., Blunier, T., Teste, G., Grilli, R., Lemoine, A., Sturges, W. T., Vannière, B., Freitag, J., and Chappellaz, J.: Southern Hemisphere atmospheric history of carbon monoxide over the late Holocene reconstructed from multiple Antarctic ice archives, Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, 2023. 

Fang, L., Jenk, T. M., Singer, T., Hou, S., and Schwikowski, M.: Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction, The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, 2021. 

Godwin, H.: Half-life of Radiocarbon, Nature, 195, 984, https://doi.org/10.1038/195984a0, 1962. 

Haan, D. and Raynaud, D.: Ice core record of CO variations during the last two millennia: atmospheric implications and chemical in- teractions within the Greenland ice, Tellus B, 50, 253–262, 1998. 

Hall, B. D., Engel, A., Mühle, J., Elkins, J. W., Artuso, F., Atlas, E., Aydin, M., Blake, D., Brunke, E.-G., Chiavarini, S., Fraser, P. J., Happell, J., Krummel, P. B., Levin, I., Loewenstein, M., Maione, M., Montzka, S. A., O'Doherty, S., Reimann, S., Rhoderick, G., Saltzman, E. S., Scheel, H. E., Steele, L. P., Vollmer, M. K., Weiss, R. F., Worthy, D., and Yokouchi, Y.: Results from the International Halocarbons in Air Comparison Experiment (IHALACE), Atmos. Meas. Tech., 7, 469–490, https://doi.org/10.5194/amt-7-469-2014, 2014. 

Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth Planet. Sci. Lett., 200, 357–369, 2002a. 

Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E.: Production of selected cosmogenic radionuclides by muons 1. Fast muons, Earth Planet. Sci. Lett., 200, 345–355, 2002b. 

Hippe, K. and Lifton, N. A.: Calculating Isotope Ratios and Nuclide Concentrations for in Situ Cosmogenic 14C Analyses, Radiocarbon, 56, 1167–1174, 2014. 

Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., and Dlugokencky, E.: Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions, Nature, 578, 409–412, 2020. 

Hoffman, M.: Micro radiocarbon dating of the particulate organic carbon fraction in Alpine glacier ice: method refinement, critical evaluation and dating applications, PhD Thesis, University of Heidelberg, https://doi.org/10.11588/heidok.00020712, 2016. 

Iizuka, Y., Miyamoto, A., Hori, A., Matoba, S., Furukawa, R., Saito, T., Fujita, S., Hirabayashi, M., Yamaguchi, S., Fujita, K., and Takeuchi, N.: A firn densification process in the high accumulation dome of southeastern Greenland, Arct. Antarct. Alp. Res., 49, 13–27, 2017. 

Ikeda-f*ckazawa, T., Kawamura, K., and Hondoh, T.: Mechanism of molecular diffusion in ice crystals, Mol. Simulat., 30, 973–979, 2004. 

Ikeda-f*ckazawa, T., f*ckumizu, K., Kawamura, K., Aoki, S., Nakazawa, T., and Hondoh, T.: Effects of molecular diffusion on trapped gas composition in polar ice cores, Earth Planet. Sc. Lett., 229, 183–192, 2005. 

Jöckel, P. and Brenninkmeijer, C. A. M.: The seasonal cycle of cosmogenic 14CO at the surface level: A solar cycle adjusted, zonal-average climatology based on observations, J. Geophys. Res., 107, 4656, https://doi.org/10.1029/2001JD001104, 2002. 

Kuhl, T. W., Johnson, J. A., Shturmakov, A. J., Goetz, J. J., Gibson, C. J., and Lebar, D. A.: A new large-diameter ice-core drill: the Blue Ice Drill, Ann. Glaciol., 55, 1–6, https://doi.org/10.3189/2014AoG68A009, 2014. 

Lal, D., Nishiizumi, K., and Arnold, J. R.: Insitu Cosmogenic 3H, 14C, and 10Be for Determining the Net Accumulation and Ablation Rates of Ice Sheets, J. Geophys. Res., 92, 4947–4952, 1987. 

Lal, D., Jull, A. J. T., Donahue, D. J., Burtner, D., and Nishiizumi, K.: Polar Ice Ablation Rates Measured Using Insitu Cosmogenic 14C, Nature, 346, 350–352, 1990. 

Lal, D., Jull, A. J. T., Donahue, D. J., Burr, G. S., Deck, B., Jouzel, J., and Steig, E.: Record of cosmogenic in situ produced 14C in Vostok and Taylor Dome ice samples: Implications for strong role of wind ventilation processes, J. Geophys. Res., 106, 31933–31941, 2001. 

Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, 2014. 

Linow, S., Horhold, M. W., and Freitag, J.: Grain-size evolution of polar firn: a new empirical grain growth parameterization based on X-ray microcomputer tomography measurements, J. Glaciol., 58, 1245–1252, 2012. 

Lowe, D. C., Levchenko, V. A., Moss, R. C., Allan, W., Brailsford, G. W., and Smith, A. M.: Assessment of “storage correction” required for in situ 14CO production in air sample cylinders, Geophys. Res. Lett., 29, GL014719, https://doi.org/10.1029/2002GL014719, 2002. 

Lupker, M., Hippe, K., Wacker, L., Kober, F., Maden, C., Braucher, R., Bourles, D., Romani, J. R. V., and Wieler, R.: Depth-dependence of the production rate of in situ 14C in quartz from the Leymon High core, Spain, Quat. Geochronol., 28, 80–87, 2015. 

Manning, M. R., Lowe, D. C., Moss, R. C., Bodeker, G. E., and Allan, W.: Short-term variations in the oxidizing power of the atmosphere, Nature, 436, 1001–1004, 2005. 

Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jockel, P., and Lelieveld, J.: Small Interannual Variability of Global Atmospheric Hydroxyl, Science, 331, 67–69, 2011. 

Noguchi, M., Tachibana, S., and Nagahara, H.: Diffusivity and solubility of methane in ice Ih, Geochem. J., 53, 83–89, 2019. 

Oyabu, I., Kawamura, K., Uchida, T., Fujita, S., Kitamura, K., Hirabayashi, M., Aoki, S., Morimoto, S., Nakazawa, T., Severinghaus, J. P., and Morgan, J. D.: Fractionation of O2/N2 and Ar/N2 in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core, The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, 2021. 

Patterson, J. D. and Saltzman, E. S.: Diffusivity and Solubility of H2 in Ice Ih: Implications for the Behavior of H2 in Polar Ice, J. Geophys. Res., 126, e2020JD033840, https://doi.org/10.1029/2020JD033840, 2021. 

Petrenko, V. V., Severinghaus, J. P., Brook, E. J., Mühle, J., Headly, M., Harth, C., Schaefer, H., Reeh, N., Weiss, R., Lowe, D. C., and Smith, A. M.: A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon, J. Glaciol., 54, 233–244, 2008. 

Petrenko, V. V., Martinerie, P., Novelli, P., Etheridge, D. M., Levin, I., Wang, Z., Blunier, T., Chappellaz, J., Kaiser, J., Lang, P., Steele, L. P., Hammer, S., Mak, J., Langenfelds, R. L., Schwander, J., Severinghaus, J. P., Witrant, E., Petron, G., Battle, M. O., Forster, G., Sturges, W. T., Lamarque, J.-F., Steffen, K., and White, J. W. C.: A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air, Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, 2013a. 

Petrenko, V. V., Severinghaus, J. P., Smith, A. M., Riedel, K., Baggenstos, D., Harth, C., Orsi, A., Hua, Q., Franz, P., Takesh*ta, Y., Brailsford, G. W., Weiss, R. F., Buizert, C., Dickson, A., and Schaefer, H.: High-precision 14C measurements demonstrate production of in situ cosmogenic 14CH4 and rapid loss of in situ cosmogenic 14CO in shallow Greenland firn, Earth Planet. Sc. Lett., 365, 190–197, 2013b. 

Petrenko, V. V., Severinghaus, J. P., Schaefer, H., Smith, A. M., Kuhl, T., Baggenstos, D., Hua, Q., Brook, E. J., Rose, P., Kulin, R., Bauska, T., Harth, C., Buizert, C., Orsi, A., Emanuele, G., Lee, J. E., Brailsford, G., Keeling, R., and Weiss, R. F.: Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates, Geochim. Cosmochim. Ac., 177, 62–77, 2016. 

Petrenko, V. V., Smith, A. M., Schaefer, H., Riedel, K., Brook, E., Baggenstos, D., Harth, C., Hua, Q., Buizert, C., Schilt, A., Faïn, X., Mitchell, L., Bauska, T., Orsi, A., Weiss, R. F., and Severinghaus, J. P.: Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event, Nature, 548, 443–446, 2017. 

Petrenko, V., Severinghaus, J., and Brook, E.: 2013–2015 ice core and firn air studies of carbon-14 and bubble closure at Summit, Greenland, Arctic Data Center [data set], https://doi.org/10.18739/A2599Z216, 2020. 

Petrenko, V. V., Smith, A. M., Crosier, E. M., Kazemi, R., Place, P., Colton, A., Yang, B., Hua, Q., and Murray, L. T.: An improved method for atmospheric 14CO measurements, Atmos. Meas. Tech., 14, 2055–2063, https://doi.org/10.5194/amt-14-2055-2021, 2021. 

Petrenko, V., Neff, P., Etheridge, D., Smith, A., Buizert, C, Murray, L., Trudinger, C., Shi, M., Crosier, E., Hmiel, B., Thornton, D., Jong, L., van Ommen, T., Curran, M., Moy, A., Plummer, C., Nation, M., Beaudette, R., Harth, Langenfelds, R., Mitrevski, B., Dyonisius, M., Ng, J., Severinghaus, J. P., and Weiss, R.: Insights into the preindustrial atmospheric methane sources and sinks from 14CH4 and 14CO measurements at Law Dome, Antarctica, AGU Fall Meeting, San Francisco, December 2023, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1391486 (last access: July 2024), 2023. 

Petrenko, V. V., BenZvi, S., Dyonisius, M., Hmiel, B., Smith, A. M., and Buizert, C.: The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-3126, 2024. 

Petron, G., Lang, P. M., and Dlugokencky, E.: NOAA GML Carbon Monoxide surface flask data, https://gml.noaa.gov/dv/iadv/, last access: December 2018. 

Prokopiou, M., Martinerie, P., Sapart, C. J., Witrant, E., Monteil, G., Ishijima, K., Bernard, S., Kaiser, J., Levin, I., Blunier, T., Etheridge, D., Dlugokencky, E., van de Wal, R. S. W., and Röckmann, T.: Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres, Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, 2017. 

Raynaud, D., Chappellaz, J., Ritz, C., and Martinerie, P.: Air content along the Greenland Ice Core Project core: A record of surface climatic parameters and elevation in central Greenland, J. Geophys. Res., 102, 26607–26613, 1997. 

Severinghaus, J. P. and Battle, M. O.: Fractionation of gases in polar ice during bubble close-off: New constraints from firn air Ne, Kr and Xe observations, Earth Planet. Sci. Lett., 244, 474–500, 2006. 

Severinghaus, J. P., Grachev, A., and Battle, M.: Thermal fractionation of air in polar firn by seasonal temperature gradients, Geochem. Geophys. Geosys., 2, 2000GC000146, https://doi.org/10.1029/2000GC000146, 2001. 

Siegenthaler, U., Monnin, E., Kawamura, K., Spahni, R., Schwander, J., Stauffer, B., Stocker, T. F., Barnola, J. M., and Fischer, H.: Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium, Tellus B, 57, 51–57, 2005. 

Smith, A. M., Levchenko, V. A., Etheridge, D. M., Lowe, D. C., Hua, Q., Trudinger, C. M., Zoppi, U., and Elcheikh, A.: In search of in-situ radiocarbon in Law Dome ice and firn, Nucl. Instrum. Meth. B, 172, 610–622, 2000. 

Smith, A. M., Hua, Q., Williams, A., Levchenko, V., and Yang, B.: Developments in micro-sample 14C AMS at the ANTARES AMS facility, Nucl. Instrum. Meth. B, 268, 919–923, 2010. 

Stoll, N., Eichler, J., Horhold, M., Shigeyama, W., and Weikusat, I.: A Review of the Microstructural Location of Impurities in Polar Ice and Their Impacts on Deformation, Front. Earth Sci., 8, 615613, https://doi.org/10.3389/feart.2020.615613, 2021. 

Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753–23759, 2000. 

Stuiver, M. and Polach, H. A.: Reporting of 14C Data – Discussion, Radiocarbon, 19, 355–363, 1977. 

Svalgaard, L. and Schatten, K. H.: Reconstruction of the Sunspot Group Number: The Backbone Method, Sol. Phys., 291, 2653–2684, 2016. 

van de Wal, R. S. W., Meijer, H. A. J., de Rooij, M., and van der Veen, C.: Radiocarbon analyses along the EDML ice core in Antarctica, Tellus B, 59, 157–165, 2007. 

van der Kemp, W. J. M., Alderliesten, C., van der Borg, K., Holmlund, P., de Jong, A. F. M., Karlof, L., Lamers, R. A. N., Oerlemans, J., Thomassen, M., and van de Wal, R. S. W.: Very little in situ produced radiocarbon retained in accumulating Antarctic ice, Nucl. Instrum. Meth. B, 172, 632–636, 2000. 

van der Kemp, W. J. M., Alderliesten, C., van der Borg, K., de Jong, A. F. M., Lamers, R. A. N., Oerlemans, J., Thomassen, M., and van de Wal, R. S. W.: In situ produced 14C by cosmic ray muons in ablating Antarctic ice, Tellus B, 54, 186–192, 2002. 

Vimont, I. J., Turnbull, J. C., Petrenko, V. V., Place, P. F., Karion, A., Miles, N. L., Richardson, S. J., Gurney, K., Patarasuk, R., Sweeney, C., Vaughn, B., and White, J. W. C.: Carbon monoxide isotopic measurements in Indianapolis constrain urban source isotopic signatures and support mobile fossil fuel emissions as the dominant wintertime CO source, Elem. Sci. Anth., 5, 63, https://doi.org/10.1525/elementa.136, 2017.  

Wilson, A. T. and Donahue, D. J.: Ams Radiocarbon Dating of Ice – Validity of the Technique and the Problem of Cosmogenic Insitu Production in Polar Ice Cores, Radiocarbon, 34, 431–435, 1992. 

Young, N. E., Schaefer, J. M., Goehring, B., Lifton, N., Schimmelpfennig, I., and Briner, J. P.: West Greenland and global in situ 14C production-rate calibrations, J. Quatern. Sci., 29, 401–406, 2014. 

Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland (2024)
Top Articles
Young and the Restless Spoilers: Chelsea Confesses | August 19-23 | UPDATE!
Toniʼs Spoiler Site The Young And The Restless – Repeat Replay
No Hard Feelings (2023) Tickets & Showtimes
Why Are Fuel Leaks A Problem Aceable
Uca Cheerleading Nationals 2023
Myexperience Login Northwell
Collision Masters Fairbanks
The Pope's Exorcist Showtimes Near Cinemark Hollywood Movies 20
Jesus Revolution Showtimes Near Chisholm Trail 8
Myunlb
shopping.drugsourceinc.com/imperial | Imperial Health TX AZ
Uvalde Topic
Koop hier ‘verloren pakketten’, een nieuwe Italiaanse zaak en dit wil je ook even weten - indebuurt Utrecht
7440 Dean Martin Dr Suite 204 Directions
Chile Crunch Original
The Superhuman Guide to Twitter Advanced Search: 23 Hidden Ways to Use Advanced Search for Marketing and Sales
Sound Of Freedom Showtimes Near Cinelux Almaden Cafe & Lounge
Chelactiv Max Cream
Army Oubs
H12 Weidian
Our History
Busted Newspaper Fauquier County Va
Icivics The Electoral Process Answer Key
Ivegore Machete Mutolation
What Are The Symptoms Of A Bad Solenoid Pack E4od?
Low Tide In Twilight Ch 52
R/Sandiego
Kaiser Infozone
Boondock Eddie's Menu
AP Microeconomics Score Calculator for 2023
Devin Mansen Obituary
The Mad Merchant Wow
American Bully Xxl Black Panther
Ewwwww Gif
Otter Bustr
Craigslist Jobs Brownsville Tx
Spn-523318
Restored Republic May 14 2023
Doordash Promo Code Generator
Beaufort SC Mugshots
Janaki Kalaganaledu Serial Today Episode Written Update
Sun Tracker Pontoon Wiring Diagram
Parent Portal Pat Med
Here's Everything You Need to Know About Baby Ariel
Swsnj Warehousing Inc
Phone Store On 91St Brown Deer
Espn Top 300 Non Ppr
German American Bank Owenton Ky
Erica Mena Net Worth Forbes
Diesel Technician/Mechanic III - Entry Level - transportation - job employment - craigslist
Kenmore Coldspot Model 106 Light Bulb Replacement
Bellin Employee Portal
Latest Posts
Article information

Author: Melvina Ondricka

Last Updated:

Views: 6081

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Melvina Ondricka

Birthday: 2000-12-23

Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

Phone: +636383657021

Job: Dynamic Government Specialist

Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.